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Abstract— In this paper, we investigate how heterogeneous
multi-robot systems with different sensing capabilities can
observe a domain with an a priori unknown density function.
Common coverage control techniques are targeted towards
homogeneous teams of robots and do not consider what happens
when the sensing capabilities of the robots are vastly different.
This work proposes an extension to Lloyd’s algorithm that
fuses coverage information from heterogeneous robots with
differing sensing capabilities to effectively observe a domain.
Namely, we study a bimodal team of robots consisting of
aerial and ground agents. In our problem formulation we use
aerial robots with coarse domain sensors to approximate the
number of ground robots needed within their sensing region to
effectively cover it. This information is relayed to ground robots,
who perform an extension to Lloyd’s algorithm that balances
a locally focused coverage controller with a globally focused
distribution controller. The stability of the Lloyd’s algorithm
extension is proven and its performance is evaluated through
simulation and experiments using the Robotarium, a remotely-
accessible, multi-robot testbed.

I. INTRODUCTION

Multi-robot systems are well suited to solve highly par-
allelizable and redundant tasks [1], [2]. One such task is
environmental monitoring and surveillance, where features
or events within a large domain must be simultaneously
observed. Environmental monitoring is commonly solved
with a method called coverage control where agents in
a multi-agent system distribute themselves throughout the
domain optimally with respect to the features of interest [3].
Coverage control has many practical applications including
distribution of farming robots and search and rescue teams
surveying a disaster site [4], [5]. A family of coverage control
solutions derived from Lloyd’s algorithm presented in [6]
perform coverage control by having the agents follow the
spatial gradient of a coverage quality cost function. In this
paper, we address the implementation of coverage control
on a team of heterogeneous agents consisting of aerial and
ground robots with different but limited sensing capabilities
that further extends Lloyd’s algorithm.

Lloyd’s algorithm has been extended upon in many ways
in an effort to increase the algorithm’s applicability to
partially heterogeneous and range-limited teams [7], [8], [9].
Previous extensions of Lloyd’s algorithm have introduced
a weighting coefficient to the coverage cost function when
used on heterogeneous teams [10]. The method proposed
in [7] uses power diagrams to account for the robots’
differing capabilities but considers robots of slightly different
sensing ranges. Research on coverage control in non-convex
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domains has shown that Lloyd’s algorithm can be extended to
limited sensing robots operating in domain with a uniform
density function without major loss of performance when
compared to the traditional Lloyd’s algorithm [11], [12].
A practical variant of Lloyd’s algorithm presented in [9]
uses proximity graphs to account for an agents’ limited
sensing and communication capability in a domain with a
non-uniform density. However, these extensions to Lloyd’s
algorithm do not account for a method to fuse knowledge
from significantly heterogeneous teams of robots.

In the coverage control problem formulation, agents oper-
ate over a domain with events or features to be observed
that are distributed according to some underlying density
function [13]. On a domain with a uniform density function,
the cost function and subsequent distributed control law
is determined only by the boundaries of the domain and
the location of the agent’s Voronoi graph neighbours [14].
On a domain where the underlying density function varies
spatially, the coverage cost function is formulated using the
domain boundaries, agent neighbors, and the density func-
tion. Because of this, the density function must be known a
priori, agents must have large sensing ranges, or the domain
must be explored to learn it. This poses a question when
implementing Lloyd’s algorithm on a system of robots that
are surveying a domain—namely, how can robots effectively
explore and cover a domain without complete knowledge
of the underlying density function? This paper proposes a
method to fuse information from a heterogeneous team of
aerial and ground robots of different sensing capabilities to
improve the coverage capabilities of the multi-robot system.

In this paper we consider a heterogeneous multi-robot
team consisting of a known static number of ground robots
equipped with high resolution, low range sensors and aerial
robots with low resolution, high range sensors, tasked with
covering a domain much larger than an individual ground
robots sensing range. To overcome the limited global vision
of the ground robots, the aerial robots roughly estimate the
importance function within the domain and regions of inter-
est throughout the domain are identified. This information
can then be used by the ground robots to help distribute
themselves globally while performing local coverage using
their higher fidelity but range limited sensors. Combining the
sensing capabilities of the aerial and ground robots within the
system enables high resolution sensor coverage that would
not be possible by either homogeneous team alone.

With our proposed heterogeneous system, a trivial solution
can be formed by simply using the aerial team to relay
the entire density function (coarsely) to the ground team;
however, this solution is not ideal for the following reasons;



1) The fine sensing abilities of the first team of robots
are not leveraged to make fine local positioning ad-
justments.

2) Relaying the entire density function can impose cum-
bersome, unnecessary, and potentially bandwidth re-
stricted data transfers and computation when the multi-
agent system becomes large.

The method proposed in this work leverages the strengths
within the heterogeneous team’s sensing abilities and en-
codes critical global distribution data into a small matrix
of region weights. Our method is a parameter-less extension
to Lloyd’s algorithm that can leverage heterogeneous teams
of robots to observe domains of non-uniform, multi-modal,
unknown densities.

Section II of this paper will describe the heterogeneous
system and propose a coverage controller for the hetero-
geneous team with a proof of its stability. Section III will
present results on the controller’s performance in simulation
and experimentally on the Robotarium [15]. Finally, Section
IV will contain conclusions and discussions of the results.

II. COVERAGE CONTROL WITH HETEROGENEOUS TEAMS

A. Traditional Lloyd’s Algorithm

In the traditional Lloyd’s Algorithm, M robots with po-
sition pi ⊂ D ∈ R2, i = 1 . . .M attempt to cover a convex
domain D. Each robot i is given a region of dominance
defined by a Voronoi cell

V(pi) = {q ∈ D | ||q − pi|| ≤ ||q − pj ||,∀j 6= i}.

With the domain split up into regions of sensing dominance,
a cost function evaluating the quality of coverage with sensor
quality decreasing with the inverse square of distance can be
formulated as the following,

H(p) =

M∑
i=1

∫
V(pi)

||q − pi||2φ(q)dq, (1)

where φ is the underlying density function of the domain
describing relative areas of interest such that φ : D → [0,∞).
As is shown in [16], the following controller will drive a
robot team with infinite sensing capabilities to asymptoti-
cally achieve a centroidal Voronoi tessellation necessary for
optimal coverage with respect to a stationary minimum of
equation 1,

ui = −∂H
∂pi

and ṗi = κ(c(pi)− pi)

where κ > 0 is a control gain and c(pi) is the mass center of
the Voronoi cell of robot i [16]. Lloyd’s algorithm reaches a
local optima when all the robots are at the mass centers of
their respective Voronoi cells.

B. Heterogeneous Robot Team Composition

To solve the issue of the ground robots’ limited sensing
range, we propose the use of a heterogeneous team of robots
consisting of K unmanned aerial robots and N unmanned
ground robots. The ground robots operate in a domain DG ∈

Fig. 1: Visual demonstration of the relationships between
the aerial Voronoi boundaries (thick borders), the ground
Voronoi boundaries (colored patches), ground robot locations
(orange cartoon figure) and aerial robot locations (blue dots)

R2 and the aerial robots operate in a domain DA ∈ R2,
above and parallel to DG, surveying both the density field
φ(q) and the relative position of the ground robots below. In
the proposed algorithm, the aerial robots can communicate
with each other and the ground robots and exchange small
amounts of data, including their global position, the relative
ground robot locations, and cell weighting information to
be defined later. The ground robots can receive the afore-
mentioned data from the aerial robots and locally sense the
domain within their sensing range.

C. Combining Coarse Global Information with Local Sens-
ing

To adequately observe the regions of interest within do-
main DG for the ground robot team, the aerial robots perform
standard Lloyd’s algorithm over DA assuming a uniform
distribution φA(q). When doing this, the aerial robots create
regions of dominance in the form of Voronoi cells VA

j ⊂
DA, j = 1 . . .K. Each aerial robot will have access to two
key pieces of information: number of robots nj ∈ VA

j when
VA
j is projected onto DG and the density function φG(q)

contained in VA
j projected on DG. Figure 1 demonstrates

the relative relationships between the two sets of robots.
The ground robots’ Voronoi cells that define their regions of
dominance are bounded by the aerial robots’ Voronoi cells.
The aerial robots sense larger regions of the ground domain
than the ground robots but at a coarse resolution; this coarse
but general sensing allows the aerial robots to determine
whether the coarse distribution of robots is adequate to cover
the underlying importance function within their region of
dominance, VA

j . The aerial robots may pass this information
to drive the global distribution of the ground robots who may
then use their finer, local sensing abilities to cover and survey
the region with higher fidelity. This section develops the
distributed ground robot controller that leverages the short
range sensor information and coarse global information to
effectively cover the domain.

With the number of robots and mass contained in a pro-
jected aerial cell, as well as the total number of ground robots



deployed, N , we can formulate a measure that determines
whether a region on the ground domain has too many or
few ground robots. The goal is to align the number of
ground robots contained in an aerial Voronoi projection with
the amount of field density in an aerial Voronoi projection.
Assuming φG(q) is a probability distribution, the percentage
of robots needed to cover the area contained in aerial Voronoi
cell j is,

Φj =

∫
VA

j
φG(q) dq∫

DG φG(q) dq
. (2)

Given the percentage of total density in an aerial Voronoi
cell VA

j , Φj , and N total ground robots deployed, the ideal
number of robots within VA

j , nj,ideal, should be,

nj,ideal = ΦjN. (3)

Using the relation in (3), we can define an aerial Voronoi
cell’s underabundance or overabundance of robots with the
number of ground robots in contained in an aerial Voronoi
cell, nj , the mass percentage in an aerial Voronoi cell, Φj ,
and the total number of ground robots, N ;

σj =
nj
N
− Φj . (4)

For (4), an aerial cell with an insufficient amount of ground
robots will have a negative weight and cells with a surplus
of ground robots will have a positive weight. The cell weight
is bounded between [−1, 1].

Using σj as a measure to compare aerial cells, we can
now formulate a control law that distributes robots to optimal
regions over the domain DG. We consider a control law
that fuses traditional Lloyd’s algorithm locally and robot
distribution globally. As stated earlier, Lloyd’s algorithm
implements the following control law;

ui,local = κ(c(pi)− pi), (5)

where κ > 0 is a scalar controller gain, pi ⊂ DG ∈ R2 is
the location of robot i, and c(pi), which depends on density
function φG(q) and pi, is the mass center of Voronoi cell of
robot i over domain DG.

We define a global distribution control law ui,global with
the following,

ui,global = γ(Cmin − pi), (6)

where γ > 0 is a controller gain and Cmin, which depends on
locations of the aerial robots and σj , is the geometric center
of the aerial Voronoi cell with the minimum cell weight σmin,

σmin = min
j
σj . (7)

To combine the local and global controllers, we define the
control law in equation 8,

ui = (1− σ̂j)ui,local + σ̂jui,global, (8)

to continuosly switch between local coverge and global
distribution depending on a given robot’s necessity in an
aerial Voronoi cell. The weighting variable σ̂j ,

σ̂j =


nj

N −
∫
VA

j
φG(q) dq

nj

N −
∫
VA

j
φ(q) dq > 0

0
nj

N −
∫
VA

j
φ(q) dq ≤ 0

,

balances the aerial robots’ global coverage information with
the ground robots’ local coverage information to dynamically
favor global distribution or local coverage based on the
number of robots within each aerial Voronoi cell. The goal of
this control law is to leverage the coarse global information
of the aerial robots to overcome the limited sensing of the
ground robots’ high resolution local coverage. In order to
use σj in the control law, σ̂j is defined as σj bounded above
0. This is due to the fact that allowing σ̂j < 0 could possibly
result in robots settling to an undesired local minima on the
boundary between deprived aerial cells (i.e. with σj < 0).

D. Controller Stability

According to [6], Lloyd’s algorithm finds a stable and
locally optimal solution to coverage. Thus, to prove stability,
we show that each cell weight σj approaches 0 as t →
∞, reducing the proposed controller in equation (8) to the
controller in equation (5), which is proven asymptotically
stable in [6].

In this proof, each ground robots’ influence is approxi-
mated as a bivariate normal distribution over DG with mean
pi and variance Σ. The number of robots in an aerial cell j is
approximated by integrating all robots’ distributions over the
aerial Voronoi cell j. This creates a continuum approximation
of nj

N .

nj
N
≈ 1

N

N∑
i=1

∫
VA

j

N (pi,Σ)dq (9)

σj ≈
1

N

N∑
i=1

∫
VA

j

N (pi,Σ)dq −
∫
VA

j

φG(q)dq (10)

With the assumption that the field density φG(q) is normal-
ized and the number of robots in the system is static, the
total sum of the aerial cell weights σj is always equal to
zero,

K∑
j=1

σj = 0. (11)

Due to the conservation of robots assumption in (11), the
minimum cell weight σmin will always be less than or equal
to zero when not in equilibrium. Intuitively, this states that
if there are aerial cells with too many robots, there must
also be aerial cells with too few robots. In this proof, we
show that the minimum cell weight is always approaching
zero and thus the total magnitude of all cell weights is
also approaching zero due to the conservation relationship
described in equation 11.



The minimum cell weight is always increasing because
the control law defined in equation 8 actively attracts ground
robots to the aerial cell with the lowest weight, by definition,
and drives robots out of aerial cells with too many robots.
To prove this, we will show the time derivative of σmin is
always positive when the system is under the control law
defined in equation 8;

dσmin

dt
=

N∑
i=1

〈∇σmin,i, ui〉

where ∇σmin,i is the gradient of σmin due to robot i and ui
is the control produced by equation (8).

Inherently, the proposed controller is suited for situations
in which the ground robots are needed in areas outside of
their sensing regions. In relevant systems, we know K > N ;
so in general, we can infer that Cmin−pi > c(pi)−pi. From
these practically inspired assumptions, if σj 6= 0, the control
law ui will be dominated by ui,global, ui ≈ ui,global. Thus, the
time derivative of the minimum cell weight can be calculated
as follows;

dσmin

dt
=

N∑
i=1

〈∇σmin, ui,global〉.

When taking the gradient of σ with respect to the location
of the robot, the field density term

∫
VA

min
φ(q)dq goes to

zero because neither the aerial Voronoi cell nor the density
function within an aerial Voronoi cell depend on the ground
robots’ locations and we are left with the gradient of the
integral of the normal distribution. In order to perform this
definite Gaussian integral, we can approximate the bounds
of the aerial Voronoi cell by defining a bounding box, B,
that completely contains the aerial cell.

σmin =

∫
VA

min

N (p,Σ)dq ≈
∫
B
N (p,Σ)dq,

∇σmin ≈
1

N

∫
B
∇N (p,Σ)dq,

∇σmin,i ≈

[
α1(e−(b1+p

(i)
1 )2 − e−(b1−p

(i)
1 )2)

α2(e−(b2+p
(i)
2 )2 − e−(b2−p

(i)
2 )2)

]
(12)

where b1,2 denote the size of the box around the Voronoi
cell of interest, α1,2 are positive scalars that are artifacts
of integrating a normal distribution that do not change the
direction of gradient, and p(i)1 and p(i)2 refer to the location of
robot i with respect to the geometric center of the bounding
box.

With the gradient of the lowest weight, σmin, defined in
(12), the lowest weight is always increasing if the inner
product between ∇σmin and the global control law ui,global
is positive. Since ui,global is, by definition, pointed towards
the center aerial cell with the lowest weight and the gradient
of the robot’s normal distribution with respect to its position
is pointed inwards towards the cell with the lowest weight

Fig. 2: Computed final cost of robot teams surveying a
bimodal distribution with differing values of K

N

(as shown in 12), we can conclude that their inner product
is positive.

dσmin

dt
=

N∑
i=1

〈∇σmin, ui,global〉 > 0 (13)

lim
t→∞

σmin = 0

It is important to note that the cell that has the lowest
weight can change with time; this is because as robots move
into a cell that is in need of robots, its weight increases and
thus no longer needs robots so another aerial cell will become
the lowest weighted cell. With the relationship described in
equation 11, we know that the magnitude of all the weights
will decrease as t→∞. As the magnitude of all the weights
go to zero, the control law defined in equation 8 approaches
the standard Lloyd’s algorithm control law, which has been
proven stable in [6].

III. EXPERIMENTAL RESULTS

In this section, we will present simulated and experimental
results of the proposed algorithm and compare to previous
solutions to coverage control. To validate the algorithm per-
formance, the Robotarium [15], a remotely accessible, multi-
robot research facility at the Georgia Institute of Technology
is used. We will also present necessary modifications to
the proposed algorithm that improve performance due to
the discrete nature of the system (i.e. robots do not have
continuous influence).

A. Varying the Ratio of Robots

First, it is important to note that the number of aerial
and ground robots in the system can vastly change the
algorithm’s performance. When the ratio of aerial robots to
ground robots, K

N , is large, the ground robots will be directed
towards only the peaks of the non-uniform field over DG

and artifacts of the due to the discrete positioning of the
robots will adversely influence the behaviour of the algorithm
will become more apparent. When this ratio is kept small,
the ground robots can find an appropriate balance between
distributing themselves in their respective cells and exploring
other cells. However, as more ground robots are added, the



(a) (b) (c)

(d) (e) (f)

Fig. 3: State trajectory of the 12 ground robots in simulation (a) - (c) and the final configuration in experiment (d) - (f)
using, (a),(d) the proposed algorithm, (b),(e) standard Lloyd’s algorithm with unlimited sensor range, and (c),(f) standard
Lloyd’s with limited sensing range. For the simulation figures, we indicate the initial positions of the ground robots (black
X markers), the trajectory of each robot (red dotted line), and the final position of the ground robots (open blue circles).

communication bandwidth requirement for the aerial robots
increases due to the higher information transmission demand
to pass information to the ground robots. The trivial case
would be to set K = 1 and only vary N however, this
disregards the ground robots’ range limited nature. Thus,
an appropriate ratio can be chosen given the ground robots
sensing range and domain size. Figure 2 shows the steady
state final value of the normalized cost functions of various
K
N ratios of robots operating over the same domain DG with
the same underlying density field. To evaluate the quality
of coverage, we use the cost function defined in equation 1
evaluated at each time iteration of the system. For Figure 2
we are using the cost from equation 1 evaluated once the
stationary local optimum is reached.

B. Consideration of Discrete Robot Positions

From the definition in equation 4 we know that, unless
N is infinite, σj is going to take on discrete values. Thus,
when a single ground robot enters or leaves an aerial cell, that
cell’s weight will change by ± 1

N . This is an issue because
the definition of the ideal distribution of robots defined in
equation 3 can never be achieved. To avoid Zeno effects [17],
the discretization error of σj should be bounded to ± 1

N . In
the implementation of (8) the following modification is made
to σ̂j ,

σ̂j =


nj

N −
∫
VA

j
φG(q) dq,

nj

N −
∫
VA

j
φG(q) dq > 1

N

0,
nj

N −
∫
VA

j
φG(q) dq ≤ 1

N

.

(14)
This modification prevents robots from oscillating between
cells with |σj | < 1

N .

C. Experimental Results

The proposed algorithm is implemented on the Robo-
tarium using simulated aerial robots and differential drive
robots. Barrier certificates are implemented on the testbed to
guarantee safe and collision free operation. The Robotarium
allows robots to operate on a 320cm by 200cm rectangular
domain.

For this experiment, we choose the underlying distribution
of the ground domain DG to be a bivariate Gaussian dis-
tribution. This multi-modal distribution is chosen because,
depending on the initial positions of the ground robots,
a range-limited team might settle to an undesirable local
minimum and not be able to effectively observe both modes
of the domain.

To show the relative performance of this proposed algo-
rithm, we present the coverage capabilities on the bimodal
distribution of three robot teams each consisting of N = 12
ground robots. The first team performs standard Lloyd’s
algorithm with no modifications (i.e. assuming unlimited
range sensing) assuming the aforementioned bimodal density.
The second team also performs standard Lloyd’s algorithm
but consists of robots with range-limited sensors with a
maximum sensing distance of 30 centimeters. The final team
performs the proposed algorithm with range-limited sensors
(also with a maximum sensing distance of 30 centimeters)
and K = 4 aerial robots where the aerial robots first perform
standard Lloyd’s algorithm with an uniform distribution.
Figures 3a, 3b, and 3c demonstrate the state trajectories
of each of the three scenarios in simulation. Additionally,
the three scenarios were tested identically to their simulated
analog on Robotarium testbed using physical robots and the
final configurations are shown in Figures 3d, 3e, and 3f. It



Fig. 4: Computed coverage cost H for each of the three
simulated scenarios.

Fig. 5: Computed coverage cost H for each of the three
experimental scenarios.

is not guaranteed that the proposed algorithm approaches
the same configuration as standard Lloyd’s algorithm. How-
ever, from Figure 4 and 5 we see that a range-limited
team, performing this paper’s proposed algorithm, achieves
a similar quality of coverage to that of a range-unlimited
team performing standard Lloyd’s algorithm. With restricted
information, the team performing range-limited coverage
control on this domain settles in a local optimum of the
coverage cost function that under performs relative to the
range-limited team performing the proposed algorithm of this
paper.

IV. CONCLUSION

In this paper, we proposed a method to use a hetero-
geneous team of robots to perform coverage control on a
domain with an unknown density function. We leveraged
aerial robots with long-range, coarse resolution sensors to
define general regions of interest on the domain and use
ground robots with fine, short-range sensors to locally cover
the general regions of interest. To make use of these two dis-

tinct robot teams, we formulated a novel extension to Lloyd’s
algorithm that fuses the global distribution information from
the aerial robots and the local coverage information from
the ground robots. Experiments and simulation showcasing
the capabilities of this proposed algorithm were performed
to show its performance compared to standard methods. We
demonstrated that our method can fuse the limited sensing
abilities of two distinct robot teams to perform similarly to
a homogeneous team of unlimited sensing.
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